If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56x^2+450x+67=0
a = 56; b = 450; c = +67;
Δ = b2-4ac
Δ = 4502-4·56·67
Δ = 187492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{187492}=\sqrt{4*46873}=\sqrt{4}*\sqrt{46873}=2\sqrt{46873}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(450)-2\sqrt{46873}}{2*56}=\frac{-450-2\sqrt{46873}}{112} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(450)+2\sqrt{46873}}{2*56}=\frac{-450+2\sqrt{46873}}{112} $
| 5x-4x-10x=19-8 | | 4(x/3)-5=12 | | (3b-3)/2=(b-4)/6 | | -1+5x=4x+4 | | 5x-11=6x-14 | | 1/2x-2325=395/100 | | -x+1=-7× | | -3y+21=-8(y-7 | | 5x-11=6x14 | | (x-3)+12=8 | | 4x+9=2(2x+9 | | -18n=198 | | X/2-3x+4=x/3+x/2-10x-32 | | 24x+1=23x+5 | | F(x)=1/4x-2 | | h+1.5=1.5 | | x2+11x-18=0 | | x+23=2x+23 | | 4(u-9)=-8-12 | | 2x2-18=90 | | 8t^2-7t+9=0 | | 3x2+11x=90 | | -6y+17=3y-16 | | 5x=11=6x-14 | | 8t^2+9=7t | | 19/q=3/5 | | 2.13x+4=8.3 | | (-3)^(x-2)=27 | | 3x+2/3=2x+7 | | 10+6a=4a-40 | | 2(4x-3)=5(x-2) | | 4(x-3)-15x=-48 |